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Abstract: In an effort to delineate predictions of current phenomenological scattering 
models that can be tested on higher-energy accelerators, we have extrapolated 
models for total cross sections, ratio of real to imaginary amplitudes at t - 0. 
and elastic scattering differential cross sections to the 50-1000 GeV/c momentum 
range. We find that the asymptotic limit is essentially reached by 200 GeV/c in 
Regge-pole models that have a Pomeranchuk trajectory. The predictions of a 
model with zero total cross sections at infinity are contrasted with a model having 
constant asymptotic total cross sections. Extrapolations of a conventional diffrac- 
tion model are briefly considered. 

1, INTRODUCTION 

Within the next decade, the highest obtainable accelerator kinetic energy 
is expected to increase thirtyfold: USSR (70 GeV, 1968); USA (200 GeV, 1973); 
Europe (300 GeV, ?); CERN (1000 GeV pp colliding beams, 1972). In addition, 
cosmic-ray experiments in progress should provide data on total cross sec- 
tions and elastic scattering in the 100-300 GeV range. Among the interesting 
questions that will be investigated at these higher energies is the question of 
asymptotic boundary conditions for scattering theories. Over the range of 
energies studied at the present, phenomenological models based on the idea 
of Regge-pole dominance have been reasonably successful in quantitatively 
describing the data. However, it is theoretically conceivable that Regge- 
pole dominance at higher energies may be appreciably modified by branch 
cuts in the complex angular momentum plane. An even more drastic possi- 
bility is that the Regge hypothesis may be inappropriate in the description 
of ultrahigh-energy phenomena and will be replaced by a different diffraction 
mechanism. In order to devise simple experimental tests of current Regge 
ideas that can be accomplished in the early experiments on the higher-ener- 
gy accelerators, it is of interest to extrapolate to these higher energies 

* Work supported in part by the University of Wisconsin Research Committee, with 
funds granted by the Wisconsin Alumni Research Foundation, and in part by the 
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Regge parametrizations which satisfactorily account for present data. Al- 
though it is widely recognized that these parametrizations are not unique, 
nevertheless, the extrapolations of the various models have qualitatively 
similar asymptotic features. 

In this paper we concern ourselves with extrapolations to the TeV range 
of elastic-scattering and total cross section data using meson Regge-ex- 
change models. In each case we consider extrapolations of several models 
so that the model-independent features can be adjudged. In the treatment of 
total cross sections in sect. 2, we have first refitted all the available data 
(including the recent BNL data [l] in the 8-28 GeV range) in terms of two 
representative Regge models; one has vanishing total cross sections at in- 
finite energies, the other constant total cross sections. In the process of 
analyzing these data we discuss in passing a re-evaluation of symmetries 
for the meson-exchange vertices. For the elastic-scattering predictions of 
sect. 3, we have extrapolated the parametrizations of two current Regge 
models. Finally, as a representative diffraction scattering model, we con- 
sider extrapolations of the fit to the pp elastic-scattering data by Krisch [2]. 
Our goal here is simply to provide in easily accessible form projections 
into the TeV range which should be useful in the design of experiments. Un- 
doubtedly some or even all of these projections may be disproved, but in 
being so disproved they will have served their purpose. 

2. REGGE-POLE MODELS AND FORWARD ELASTIC SCATTERING 

With the Regge-pole model it is possible to obtain a complete description 
of the present data on the total cross sections and the real part of the for- 
ward elastic amplitude. There are a number of simplifications [3] that oc- 
cur in the analysis of meson-nucleon and nucleon-nucleon elastic scattering 
at the forward direction: (i) only helicity non-flip amplitudes are required, 
(ii) total cross sections are linearly related to the imaginary part of the 
amplitudes by the optical theorem, and (iii) only neutral, non-strange meson 
exchanges with C = P = (-)J can contribute to the spin-averaged forward 
amplitudes. 

The spirit of the approach is to associate, as far as possible, the t- 
channel Regge poles with the observed meson states. Of the observed par- 
ticles only the vector mesons (p’, w, &) and the tensor mesons (A:, f,, f”) 
need be considered as exchanges, according to the above quantum-number 
restrictions. An additional I=0 exchange (the Pomeranchuk) is also com- 
monly allowed in the analyses, as discussed below. In table 1 two possible 
assignments of these trajectories to SU(3) multiplets of particles are listed. 
Symmetry principles are incorporated into the Regge model in a natural 
way by requiring the symmetry to apply to the factorized Regge residues [3]. 

For the odd-signature meson exchanges (p”, w, @) we prefer not to im- 
pose a particular symmetry for the residues at the outset. Rather, we di- 
rectly use the data to determine the residues and then compare the results 
with the symmetry predictions of SU( 3) (refs. [3,4]), universality [5], and 
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Table 1 
The association of meson Regge trajectories 

with particles in two symmetry models. 

Trajectory Particle SU(3) 
multiplet 

P p (1700)? 2+ singlet 

P’ 

S 

A 

W 

@ 

P 

f (1250) 
decoupled 

f*(1500){from RN 

A2( 1326) 

W (783) 
decoupled 

‘(1020)(from EN 

P(750) 

2+ nonet 

l- nonet 

Alternative assignment 
(only two Z = 0 2+ trajectories) 

P’ 
S 
A 

f (1250) 
mixed { f *( 1500) 
A2( 1326) 

2+ singlet 
and octet 

the quark model *. Symmetry-breaking of the vector-meson trajectories is 
permitted in the analysis in that the trajectories are not constrained to be 
degenerate. The generality of our treatment of the vector-meson exchanges 
will be restricted by the assumption that the e-meson exchange is decoupled 
from the RN vertex. There exists supporting theoretical and experimental 
evidence for the validity of this assumption [7]. Finally, the physical w and 
$ particles are treated as the appropriate exchanges, with the mixing angle 
taken to be independent of momentum transfer [3]. 

The treatment of the even-signature meson exchanges will follow two 
proposed Regge models that show wide divergences in structure. A summary 
of the particle-trajectory associations in the two models is given in table 1. 
The two models to be analyzed in detail have been chosen not only because 
of their differing particle-trajectory assignments, but also because of their 
differing predictions in asymptotic extrapolations. In the more conventional 
model proposed by Barger and Olsson [3] the even-signature trajectories 
(A, P’, S) are associated with the neutral, non-strange tensor mesons (A% 
f,,f*). The mixing between the two I=0 tensor trajectories is chosen to be 
the nonet mixing angle of the (f,, f*) particles, independent of momentum 
transfer. In analogy with the C$ meson coupling, the S Regge pole is uncou- 
pled from the EN vertex (a nonet coupling ansatz [7] which also follows from 
qAqA quark constituents for the f* meson). In addition to these trajectories 
a unitary singlet Pomeranchuk trajectory with maximal intercept op(0) = 1 is 
introduced to give asymptotic constant cross sections. 

* Ref. [6] contains many quark-model predictions for high-energy scattering as well 
as references to earlier work. 
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In the alternative theoretical model proposed by Cabbibo, Horwitz, Kok- 
kedee and Ne’eman [8] (the CHKN model) there is no Pomeranchuk ampli- 
tude. Furthermore, an arbitrary mixing is allowed between the two iso- 
scalar trajectories P’ and S. The mixing angle is nearly zero at t = 0 due 
to the near asymptotic equality of TN and KN cross sections which requires 
that the leading trajectory be primarily a unitary singlet. The ratio of me- 
son to nucleon couplings of the leading trajectory is constrained such that 
the asymptotic cross sections would be in the quark counting ratio 
c,N/oNN = % in the limit of zero mixing - a limit not quite realized in the 
actual data analysis. In order to fit the experimental data the current-alge- 
bra constraint of pure F coupling is relaxed by allowing both F- and D-type 
tensor meson couplings to RN. In the analysis both crpl(O) and (YS(O) are de- 
termined to be significantly smaller than one, which means that total cross 
sections must vanish asymptotically. 

Other variations of symmetry models for forward scattering have been 
suggested [9], but most embody the basic features of the above models. 
Since numerous models can more or less fit the present data, it is mainly 
of interest to categorize basically different types of solutions. In particular 
the discussion here will be limited to the two models mentioned above. In 
discussing the results of phenomenological fits to the data, we adopt the 
following notation for the forward amplitudes: 

f(pp) = %(P)N + &p’)N + Q(A)N + $(w)N + Q(o)N, 

f(K-P) = (P)K + $(P’)K + &A)K + $(W)K + Q(o), 9 

f(n-P) = W, + (P’), + 4(P),. (1) 

The remaining scattering amplitudes are obtained by isospin and charge 
conjugation invariance. The numerical coefficients have been extracted so 
that the residues would be equal in appropriate symmetry limits (e.g., 
SU(3) (refs. [3,4]), universality [5] and quark model [S]). Representative 
forms of the amplitudes are for even-signature exchange 

‘lab oP 
(p)K = $YpmYpmN (i - co&ap)(& , 

0 

and for odd-signature exchange 

The scaling factor E, is chosen to be E, = so /2M with so = 1(GeW2. The 
optical theorem is ut = (4a/q)Imf where q is the cm. momentum. 

The experimental data on total cross sections in the 5 to 30 GeV/c mo- 
mentum range are plotted in fig. 1. The 7i*p and pp data are taken from the 
recent BNL experiment of Foley et al. [l]. Most of t$! other data come 
from the earlier BNL experiment of Galbraith et al. . The large uncertain- 
ties in the pn and pn data are evident. 

* Ref. [lo]. The cross sectionsot and Ut(pn) have also been measured at high ener- 
gy by Bellettini et al. [ll]. 
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Fig. 1. Experimental measurements for total cross sections (refs. [I, lo]). The fitted 
curves represent the Barger-Olsson Regge pale symmetry model with (P, P’, A@ .P) 
trajectories, The curves for pp and pn coincide in this fit (likewise for pp and pn). 
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Table 2 
Regge parameters of the Barger-Olsson model determined from a fit to data 

on total cross sections, (Ref/Imf)t=O and forward charge-exchange data. 
For comparison, the predictions of various symmetry schemes for the 

Regge residues are indicated. 

Fitted 
trajectory 
intercept 

Regge 
residue 

Fitted SU(3) p* C&J 
W3) (P, 4 

residue universality quark exchange 
model degeneracy 

(Pnr)(PnN) 2.16 l 0.03 a g 
CYp = 1 (PRK)(PRN) 1.77 * 0.04 a g 

(PmN)2 2.45 l 0.05 g 

(P’?w)(P’mN) 2.03 f 0.08 
cYp’ = 0.51 * 0.03 (P’KK)(P’fiN) 1.77 f 0.31 bI b 

(P’mN)2 3.02 i 0.18 h 

(An?j)(AmN) 1.6 f 0.03 

ffA = 0.34 * 0.03 (ARK)(AWN) 1.7 f 0.23 S- j 

(ARN)” 0 f ;” h k 

0.38 0.04 (WRK)(WmN) 2.5 2.8 
f 

(Yw = f (w~N)~ * 0.3 0.4 :I i> 

(pnn)(PRN) 1.1 i 0.06 
ffp= 0.54 f 0.01 (PEK)@nN) 1.2 f 0.1 iI j 

@~N2 

o + 0.9 

-0 
f i k 

x2 = 122 
No.data = 165 

repeated letter denotes predicted equality. 
} denotes verification from fit. 

The curves in fig. 1 represent the results of a simultaneous least- 
squares fit to the total cross section (Ref/Imf)t,o (ref. [l]) and forward 
charge exchange [12] data using the Barger-Olsson model with (P, P’,A, w,p) 
trajectories as previously described. The theoretical curves are in good 
agreement with the data. The A- and p-exchange residues in NN and RN 
scattering are essentially undetermined by the data and have been set to 
zero in this analysis (hence we obtain upp = o 
mate constancy and equality of at(K+p) and at @ 

and Upp = a&. The approxi- 
n) arises from the approxi- 

mate imaginary amplitude equalities 

(P’) = (w) , 

However, the corresponding residues and trajectories do not appear to be 
nearly so degenerate (c.f. table 2). In fig. 2 the corresponding theoretical 
curves for (Ref/Imf)t,o are compared with the recent data of Foley et al. 
[l]. The measurement errors on the data of Foley et al. [l] for the ratio of 
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Fig. 2. Regge symmetry model fits to the experimental data of ref. [l] 
for the ratio of real to imaginary parts at t=O. The theoretical model 

incorporates (P, P' , A, W , p) exchanges. 

real to imaginary amplitudes are divided into statistical and systematic 
parts. The experimental errors on CY* = (Ref(n*p)/Imf(7r*p)t=O are such 
that the systematic errors are expected to cancel when the sum CY, + CY_ is 
formed. A normalization parameter was introduced in the fit for each type 
of real-part data and was varied as a parameter. As shown in fig. 2 these 
fitted normalization parameters have the expected cancellation in the com- 
bination CY + + CY _. 

The fitted parameters from this analysis are given in table 2. The re- 
sults for the P’, A and p residues are consistent within errors with the SU(3) 
predictions [3]. The A and p residues are primarily determined by the me- 
son-nucleon charge exchange reactions and their symmetry properties have 
been discussed previously [4]. The Pomeranchuk couplings to nisi and m 
differ by 20% from that expected of a unitary singlet *. The P’ couplings to 
7171 and KK agree well with the SU(3) ratio based on the mixing angle at the 
fO(1250) meson pole. The x2 value of 122 indicates a good fit to the 165 data 
points. 

The projection of Regge models to ultrahigh energies is of particular in- 
terest in the planning of early experiments to be made on the higher energy 
accelerators. In fig. 3 the total cross section projections of this (P, P’, A, 
w ,p) model are shown for the 50 to 1000 GeV/c laboratory momentum range. 
By 200 GeV/c the total cross sections have leveled off and have essentially 

* If the Pomeranchuk intercept is treated as a free parameter in the analysis, we 
find (Yp(0) = 1.0550.05 which is in agreement with a ‘1ma.xima17v intercept of unity. 
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Fig. 3. Asymptotic projections of total cross sections 
from the (P, P ,A,U,p) Regge-symmetry model. 

reached their respective Pomeranchuk limits. If a Pomeranchuk trajectory 
exists, then total cross sections will remain fairly constant over the 
200-400 GeV/c range. Furthermore, the symmetry breaking in the Pomer- 
anchuk couplings to 7171 and KK can be directly measured at these momenta. 
The asymptotic projections of the Regge fit gave, 

ot (NN) 
- x 2.1 and 

ot(NN) 

ot(KN) 
- = 1.7. 
ot(“N) 

The simple quark model [6] of scattering predicts 1.5 for these ratios. 
The projections of (Re f/Imf)t=O to higher momenta are shown in fig. 4. 

Above 200 GeV/c all real parts are less than 10% of the corresponding 
imaginary parts. 

The alternative model without a Pomeranchuk trajectory (i.e., no trajec- 
tory with @p(O) = 1) presents a completely different asymptotic picture with 
vanishing total cross sections at infinite energy. If 4 is used to denote the 
mixing of the isoscalar tensor mesons, X = F - $D, and ypf, yS denote the 
P’ and S trajectory residues, the CHKN model [8] can be written in terms 
of the residues of eqs. (1) and (2) by the substitutions: 

Yp7inYpRN = 2ypl(di cos @ + sin $)(a cos $ + x sin 6)) 

YpNN2 = 2yp,(fi cos$ + h sin$)2, 
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PLAB (G&/cl 

Fig. 4. Asymptotic projections of Q! = {Ref(O)/Imf(O)} from the 
(P,P’,A,U,p) Regge-symmetry model. 

Yp’71r yp’NN = 2ys(fi sin $ - cos $)(fi sin $ - h cos $) , 

yp,myp,sN = 2yS(2flsin Cp + cos $)(Jz sin $J - h cos $) , 

yP ‘RN 2 = 2yS(fi sin 6 - A cos $)2. 

The fits to the cross section and real parts data using the CHKN model are 
shown in figs. 5 and 6. (In this fit the p and w parameters were constrained 
to have the values in table 2.) The residue and trajectory parameters are 
given in table 3. The x2 of 210 achieved in this fit is considerably higher 
than with the Pomeranchuk model; however this still does not rule out this 
general type of solution. Since no x2 minimum seemed to exist, we forced 
a solution close to that originally found by CHKN. The high energy projec- 
tions of the total cross sections in this model are shown by the solid curves 
in fig. 7. The dashed curves are the projections of the fits from the Barger- 
Olsson model. The two solutions for at(pp) differ by several millibarns by 
200 GeV/c. Accurate ut(pp) and ot(pp) data over the momentum range 25-70 
GeV/c should differentiate the two solutions. Fig. 8 shows (Ref/lImf)t,o in 
the CHKN model. This ratio tends to the constant value 

-cot ($ncup1) = -0.09, 

asymptotically. In contrast (Ref/Im,f)t,o approaches zero at high energy in 
the Barger-Olsson model. 

3. ELASTIC SCATTERING PROJECTIONS 

3.1. Regge models 
The experimental data on elastic scattering above 3 GeV/c indicate vir- 
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Fig. 5. Fits to total cross sections using the CHKN Regge model. 
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Fig. 6. Fits to a! = {Ref(O)/Imf(O)} using the CHKN Regge model. . 

tually no isospin dependence *. For example, approximate equalities such 

as do/dt (PP) M du/dt (pn) and do/dt (r-p) x dcr/dt (a+p) are experimentally 
observed. This fact is readily interpreted as evidence for the dominance of 
isoscalar meson exchanges. As discussed in sect. 2 these I=0 exchanges 
are usually chosen to be the P, P’ and w. The w amplitude changes sign be- 

Table 3 
Regge parameters of the CHKN model determined from a fit to the data 

on total cross sections and (Ref/Imf)t=O. 

Trajectory 

ffP’ = 0.94 i 0.01 

as = 0.68 i 0.1 

Residue 

ypl = 0.58 i 0.02 

X3 = 0.17 f 0.02 

P’,S mixing angle 

$J = 6O f 2O 

F/D parameter 

A = F - +D = 2.19 zk 0.02 

x2 = 220. No. data = 165. 

* See for example ref. [13]; especially the reports by Barger, Longo and Per1 re- 
view much of the existing experimental evidence for isospin independence. 
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Fig. 7. Asymptotic projections of total cross sections from the CHKN Regge model. 
Dotted curves are results from fig. 3 of the Barger-Olsson model. 
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Fig. 8. Asymptotic projections of CY = {Ref (O)/Imf (0)} 
from the CHKN Regge model. 
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tween NN and NN elastic amplitudes and thereby accounts for the marked 
differences in their angular distributions. The interference of w with P+ P’ 
gives rise to the effective shrinkage in pp scattering and anti-shrinkage in 
pp scattering. The dominant t-channel helicity amplitudes for P and P’ ex- 
changes must be non-flip inasmuch as the elastic differential cross sections 
show no flattening near t=O as would result from large helicity flip ampli- 
tudes. The w also has a sizeable helicity non-flip component. The relative 
magnitudes and characteristics of the helicity flip amplitudes of these three 
exchanges are not well established by present phenomenological analyses. 
Present polarization data do not adequately determine the flip amplitudes. 

Finally, the non-shrinkage of the forward peaks in nN scattering requires 
a relatively flat Pomeranchuk trajectory. In particular its slope is con- 
strained to be less than i (GeV/c)-2 with the smaller values preferred. In 
contrast the P’ and w trajectories are normally found to have the more 
conventional slopes of about 1 (GeV/c)-2. 

Two representative parametrizations embodying the characteristics cited 
above have been proposed by Chiu, Chu and Wang [14] and by Rarita, Riddel, 
Chiu and Phillips [15] (here after referred to as CCW and RRCP respective- 
ly). A basic difference in the solutions obtained by these authors is the 
treatment of the isoscalar helicity flip amplitudes, arbitrarily set equal to 
zero by CCW (neglecting high energy pp polarization) but allowed to have 
significant magnitude by RRCP. In the projections presented below we con- 
sider solution 3 of RRCP and the solution obtained by CCW. Both solutions 
have a Pomeranchuk trajectory given approximately by 

@p(t) = 1 + it. 

In these Regge models the energy dependence will be governed by this tra- 
jectory at ultrahigh energies. 

One of the most interesting projections from current Regge parametri- 
zations concerns the effective shrinkage to be expected in the TeV energy 
range. In order to investigate this question we have used an effective one- 
pole trajectory approximation 

to represent the multi-Regge pole situation. Using the above Regge models 
to calculate du/dt we determine the effective trajectory at an energy E by 
the equation 

do da 

2a(t) - 2 = 
ln[x(E+,t)] - ln[x(E_,t)] 

lnE+ - lnE_ ’ 

where E, = E k AE and AE is a small increment chosen to be 0.01 E. 
The effective (Y(t) for pp and pp differential cross sections are shown in 

fig. 9. The differences in the CCW and RRCP extrapolations are principally 
due to the different treatment of the helicity flip amplitudes. The large anti- 
shrinkage in the fip forward peak appears at momentum transfers greater 
than 0.3 (GeV/c)2 at energies of lo-50 GeV/c. This anti-shrinkage disap- 
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pears around 70 GeV/c. In the pp forward peak the shrinkage gradually de- 
creases with increasing energy until the Pomeranchuk limit is reached. By 

200 GeV/c the shrinkage patterns of pp and pp look almost identical. Fur- 
thermore the shrinkage at 200 GeV/c has essentially reached the level ex- 
pected from the Pomeranchuk slope. Fig. 10 shows the similar calculations 
of the effective o(t) for n*p. No dramatic changes in the shrinkage pattern 
as a function of energy are observed. 

All the above projections indicate that the C’YOSS sections will have essen- 
tially settled down to the Pomeranchuk contribution by 200 GeV/c. The con- 
tributions of the P’ and w trajectories are nearly damped out by this energy. 
Consequently, the measurement of shrinkage of the elastic scattering for- 
ward peaks at 200 GeV should determine if the Pomeranchuk exchange is in 
fact a moving pole in the j-plane. Conversely, if a fixed pole at j = 1 or cuts 
in the angular momentum plane are the dominant singularities at high ener- 
gy, then the direct experimental investigation of their properties will be 
possible. 

The two Regge models considered above make essentially identical asymp- 
totic predictions of the quantities (do/dt)t,O, uel and uel /atotal. These pro- 
jections are shown in fig. 11. Once again it is evident that the Pomeranchuk 
limit is essentially reached by 200 GeV/c. 

3.2. Diffraction models 
Recently attempts have been made to interpret the pp elastic differential 

cross section data in terms of models that are more akin to the traditional 
diffraction formulations. The asymptotic projections of these models are 
dramatically different than those cif the Regge models. The only quantitative 
fit to present data using a diffraction-like model has been presented by 
Krisch [2]. In this section we discuss the asymptotic projections of his 
model as representative of results to be expected from the customary dif- 
fraction models. 

The pp elastic scattering data are parametrized in terms of a derived 
cross section du’t /dt which is assumed to be given by an incoherent sum of 
three Gaussians in the variable fipL 

$C = iil Ai exp [ -aiB2P$, 

where /3 is the c.m. velocity and pi is the c.m. transverse momentum. The 
quantity dcrt/dt is identical to da/dt at small angle and is obtained from 
dcr/dt at large angles through a particular prescription. This formula crude- 
ly describes the data over twelve orders of magnitude [2]. The variable 
p2pg, which tends to -t{l+ (t/s)) at high energy, allows for shrinkage. The 
asymptotic shrinkage patterns predicted by the model are shown in fig. 12. 
By 200 GeV the shrinkage has essentially disappeared. 

Unfortunately this fit does not account for an important aspect of the 
present pp data. As is generally the case with diffraction models the for- 
ward differential cross section is predicted to be constant with energy. 
From the Krisch fit the value 
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Fig. 12. Ratio of Ref(O)/Imf(O) obtained from the Krisch model using the 
measured values of ot(pp) (ref. [l]) and assuming spin independence for 
forward pp scattering. The lower part of the figure shows an effective 

Regge trajectory for the Krisch model. 

= 90 mb/(GeV/c)2 

is obtained (see fig. 11). Since the pp total cross sections decrease with in- 
creasing energy and .-I 
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where (I! = (Ref/Imf)t,O, we can deduce that the magnitude of Q! 
!.p 

would 
necessarily increase with energy in this model as illustrated in lg. 12. 
Barring spin dependence of the forward amplitude, which seems unnatural 
in a diffraction picture, this model is inconsistent with the measurements 
of (Y (ref. [l]). Such difficulties are typical of attempts to use diffraction 
mode s to describe the t=O data over the present energy range where total p! 
cross sections are decreasing with energy. Thus any successful attempt to 
apply these types of diffraction models must be confined to a higher energy 
region than has been experimentally explored at present. 

4. SUMMARY 

Regge-pole models have provided a reasonably adequate description of 
total cross section and elastic-scattering data at present energies. Useful 
as such parametrization may be, there has been little in the way of critical 
experimental tests. In fact, because of the presence of the secondary tra- 
jectories which are important at present energies, it is likely that such 
critical tests must await completion of the new generation of accelerators. 
With this point in mind we have examined the features of present models in 
the ultrahigh-energy domain. Perhaps the most important result we have 
found is that the Pomeranchuk Regge pole amplitude completely dominates 
all the secondary trajectories above 200 GeV/c. Consequently, we can rea- 
sonably expect that experiments in the 200-400 GeV/c range will provide 
information bearing directly on the properties of this elusive amplitude. If 
Regge cuts play an increasingly important role at higher energies, then we 
might expect appreciable deviations from the Pomeranchuk Regge pole pro- 
jections given here. 

We anticipate that our extrapolations will be useful to physicists engaged 
in planning the early experiments to be carried out on the higher energy ac- 
celerators. 
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